The History and Evolution of the 911 Emergency Number Published July 20, 2025 45 min read # **History of the 911 Emergency Number** ### Introduction (Source: phys.org)The 911 emergency telephone number has become a cornerstone of public safety in the United States, connecting citizens to police, fire, and medical assistance with a simple three-digit call. Each year, Americans place an estimated 240 million calls to 911 – roughly 650,000 calls per day – and in many areas over 80% of these are from wireless devices (Source: phys.org) (Source: nena.org). This universal number, now more than 50 years old, revolutionized emergency communication by replacing a patchwork of local phone numbers with one easy-to-remember point of contact. The history of 911 encompasses early emergency systems, visionary legislation, technological evolution from landlines to cell phones to digital networks, and continual improvements driven by both policy and real-world events. This report provides an in-depth look at how 911 developed, the key organizations and milestones behind it, case studies of incidents that shaped it, and its profound impact on public safety and emergency response. # **Emergency Communication Before 911** (Source: smithsonianmag.com) (Source: smithsonianmag.com)Before 911, calling for help was often cumbersome and time-consuming. In the mid-20th century United States, there was no single emergency number – people dialed "0" for the operator or looked up seven-digit local numbers for each agency (police, fire, ambulance) (Source: smithsonianmag.com). This meant delays and confusion, especially for travelers or those new to an area. In some rural communities, where telephone service was sparse, citizens resorted to creative measures – for example, setting off fire alarms, church bells, or even fireworks – to signal an emergency and summon help from neighbors (Source: smithsonianmag.com). The lack of a centralized system sometimes had tragic consequences: confusion over whom to call, or reluctance to get involved, could result in critical delays. A notorious example often cited is the 1964 Kitty Genovese case in New York City – it was widely (if imperfectly) reported that witnesses did not call the police partly due to uncertainty and the complexity of reaching authorities (Source: smithsonianmag.com). International precedents provided a proof of concept for a unified number. The United Kingdom introduced **999** in 1937 as the world's first emergency telephone number (Source: totalresponse.com). That system, prompted by a fatal 1935 fire where a caller was stuck on hold with the operator, allowed Londoners to reach police or fire brigades quickly (Source: totalresponse.com). By the 1950s, several countries and cities were experimenting with short emergency codes. In Canada, for instance, the city of Winnipeg adopted **999** in 1959 for local emergencies (Source: iredellcountync.gov). These examples demonstrated that a **short**, **easy-to-dial number** could save lives by **streamlining access** to help. Despite these developments abroad, the U.S. remained reliant on manual and local methods into the 1960s. The **National Association of Fire Chiefs** was one of the first to call for change – in 1957 they recommended establishing a single nationwide number to report fires (Source: smithsonianmag.com). This idea gained urgency as the country's roads and cities grew; response to car accidents and crimes suffered from the lack of a uniform emergency contact. By 1966, a landmark report by the National Academy of Sciences titled "Accidental Death and Disability: The Neglected Disease of Modern Society" highlighted accidental injuries as an "epidemic" and explicitly urged exploration of "a single, nationwide telephone number to summon an ambulance" (Source: 911.gov). In short, by the late 1960s there was a clear recognition of the need for a universal emergency number to overcome the fragmented, pre-911 status quo (Source: smithsonianmag.com). # Legislative and Technological Origins of 911 in the U.S. (Source: 911,gov) (Source: smithsonianmag.com) The birth of 911 in America was driven by both government initiative and telephone industry cooperation. In 1967, President Lyndon Johnson's Commission on Law Enforcement and Administration of Justice officially recommended creating a single number for nationwide emergency use (Source: 911,gov). The Federal Communications Commission (FCC) heeded this call and (AT&T) met with the Bell System in November 1967 devise appropriate number (Source: to en.wikipedia.org#::text=In%201067%2C%20the%20President%27s%20Commission,9). AT&T, then the monopoly provider service, announced in January 1968 that it would establish "9-1-1" as the universal emergency number for the nation (Source: 911,gov). The digits 9 1 1 were chosen for practical and technical reasons: they form a unique, easy to remember three digit code, and on rotary phones of the era, 911 could be dialed relatively quickly (faster than 999) while the leading "1" digit signaled a special purpose number to phone switching systems (Source: en.wikipedia.org#::text=In%201968%2C%20the%20number%20was,17). This announcement set in motion a rapid pilot implementation. On **February 16, 1968**, just 35 days after AT&T's decision, the **first 911 call** was made (Source: <u>911.gov</u>). It was placed in the small town of **Haleyville**, **Alabama**, which had an independent telephone company eager to beat AT&T to the punch. Alabama Speaker of the House **Rankin Fite** dialed 9-1-1 from the Haleyville City Hall, and U.S. Representative **Tom Bevill** answered at the local police station with a simple "Hello" (Source: <u>smithsonianmag.com</u>). The call successfully connected through equipment installed by the Alabama Telephone Company, marking the nation's inaugural use of 911. (The bright red telephone used to take that historic call is still on display in Haleyville City Hall (Source: <u>cityofhaleyville.com</u>).) Just **six days later**, the second-ever 911 system went live in Nome, Alaska, showing that the concept was catching on quickly (Source: <u>911.gov</u>). The bright red telephone that answered the first 9-1-1 call (Haleyville, AL, 1968) is preserved as a historical artifact. It symbolizes the quick, successful launch of America's first emergency number service (Source: cityofhaleyville.com). Early adoption of 9-1-1 spread unevenly. By the end of 1968, a handful of cities had activated 911, and AT&T's own first 911 system debuted in Huntington, Indiana on March 1, 1968 (Source: en.wikipedia.org#:~:text=with%20the%20phone%20systems%20at,17). However, the rollout required coordination with thousands of local telephone exchanges and government authorities. In 1973, the White House's Office of Telecommunications issued a national policy statement (Bulletin 73-1) formally endorsing 911 and encouraging its nationwide implementation, with federal support for planning and technical assistance (Source: nga911.com). Throughout the 1970s, more municipalities joined the system, though some local officials were initially hesitant about costs or unaware of 911's benefits (Source: iredellcountync.gov). Congress eventually cemented 911's status with the Wireless Communications and Public Safety Act of 1999, which designated 9-1-1 as the official national emergency number of the United States (Source: 911.gov). This law – sometimes called the "911 Act" – also encouraged the enhancement of 911 capabilities (especially for wireless phones) and provided liability protections for 911 services (Source: congress.gov). In short, by 1999 what had begun as a voluntary initiative became federal law, confirming 911 as a vital public service across all states. From a **technology standpoint**, implementing 911 required upgrades to telephone switching systems and the creation of **Public Safety Answering Points (PSAPs)** to receive the calls. In the early years (late 1960s and 1970s), most 911 service was "Basic 911" – the call would be routed to a single, pre-designated PSAP, usually a police or fire dispatch center, covering the caller's area (Source: 911.gov). Call-takers had no automatic information about the caller; they relied on the person to give their location and call-back number. As 911 gained traction, the need for **faster and more accurate call handling** became apparent. By the mid-1970s, the Bell System and other telcos introduced **routing and data features** that gave rise to "Enhanced 911" (E911) (Source: 911.gov). E911 added the ability to **selectively route** a call to the correct local PSAP based on the caller's location, and to automatically display the caller's **phone number and registered address** on the dispatcher's screen (Source: 911.gov). These enhancements required building specialized 911 switching centers (selective routers) and databases for Automatic Number Identification (ANI) and Automatic Location Identification (ALI) (Source: 911.gov). By the end of the 20th century, most of the country's 911 coverage had been upgraded to E911 features, greatly improving response precision (Source: <u>nga911.com</u>). ### Role of Key Organizations: FCC, AT&T, NENA, and Others Multiple organizations have played pivotal roles in the development and operation of 911: - Federal Communications Commission (FCC): The FCC has been a key regulator and catalyst for 911. It facilitated the creation of 911 by collaborating with AT&T in 1967 to choose the number (Source: en.wikipedia.org#:~:text=In%201967%2C%20the%20President%27s%20Commission,9). Over the years, the FCC issued critical mandates to expand and improve 911 services - for example, in 1996 the FCC ordered wireless carriers to implement Enhanced 911 capabilities, establishing phased requirements for delivering caller location information from mobile phones (Source: 911.gov) (Source: 911.gov). The FCC continues to oversee 911 rules (such as Kari's Law and RAY BAUM's Act in recent years) and to push for Next Generation 911 adoption, all while working within the framework that 911 is locally operated. In essence, the FCC provides the national policy leadership and regulatory backbone that have propelled 911's evolution (Source: 911.gov) (Source: 911.gov). - AT&T and the Telephone Industry: AT&T's role was foundational as the dominant phone company in 1968, it not only selected the digits 9-1-1 but also developed the technical infrastructure to make the service work on the public switched telephone network (Source: en.wikipedia.org#::text=In%201967%2C%20the%20President%27s%20Commission,9) en.wikipedia.org#::text=ln%201968%2C%20the%20number%20was,17). AT&T's announcement instantly covered its Bell System territory (most telephone the U.S.), though independent companies opt separately (Source: en.wikipedia.org#::text=with%20the%20phone%20systems%20at,17). Notably, the independent Alabama Telephone Co. implemented 911 first, showing how local teleos also contributed (Source: en.wikipedia.org#:text=with%20the%20phone%20systems%20at,17). Over subsequent decades, AT&T and other carriers (like GTE, and later Verizon, etc.) built out the selective routers and ALI databases for E911 (Source: 911.gov). The telecom industry has remained a crucial partner by maintaining the networks that route 911 calls and by innovating solutions for wireless 911, VoIP 911, and now NG911. For example, carriers developed solutions for Phase II wireless location (using GPS in handsets or network triangulation) in response to FCC mandates (Source: 911,gov). In summary, the telephone companies provided the technical expertise and infrastructure investment that made a nationwide 911 system possible. - National Emergency Number Association (NENA): As 911 expanded, professionals in this emerging field saw a need for coordination and standards. In 1982 the National Emergency Number Association (NENA) was founded as a non-profit organization dedicated to 911 issues (Source: redskye911.com). NENA's motto, "One Nation One Number," reflects its early goal of universal 911 coverage. This association became "The Voice of 9-1-1", bringing together emergency dispatchers, public safety officials, and industry partners to share best practices and advocate for improvements (Source: redskye911.com). NENA has been instrumental in developing technical standards (such as the NENA i3 standard for NG911 networks (Source: nga911.com)), promoting training and professionalization of 911 operators, and lobbying for supportive legislation and funding. For example, NENA's work helped shape federal grant programs and recommended training curricula for 911 operators. Today, NENA continues to be a leading force in 911 modernization, ensuring that new technologies (from texting to precise GIS mapping) are integrated smoothly into emergency communications (Source: redskye911.com). - Other Key Entities: A few other organizations deserve mention. The Association of Public-Safety Communications Officials (APCO), founded in 1935, provided early leadership in police/fire radio dispatch and also supported 911 adoption and dispatcher training. The National Highway Traffic Safety Administration (NHTSA) took on a federal support role; since the 1970s NHTSA has managed programs to assist local and state 911 efforts (recognizing 911's importance in highway and medical emergencies) (Source: 911.gov). In 2004, NHTSA established the National 911 Program to coordinate nationwide progress and administer federal grant funds (Source: 911.gov). Additionally, the National Association of State 911 Administrators (NASNA) provides a forum for state-level 911 coordinators to collaborate on implementation. Together, these organizations form a network of stakeholders that have guided 911 from a concept into a robust, institutionalized component of public safety. ### **Landmark Events and Reforms Shaping 911** Throughout its history, the 911 system has been shaped by critical events and case studies – some positive demonstrations, and some tragic failures that spurred reform. Below are several **significant incidents and milestones** that had a lasting influence on 911 policy, technology, or operations: • First 911 Call (1968, Haleyville): The inaugural 9-1-1 call on Feb. 16, 1968 was not a response to an actual emergency, but rather a proof-of-concept that proved transformative (Source: smithsonianmag.com). By successfully connecting a state lawmaker to the local police chief over a special three-digit line, this small-town test demonstrated the feasibility and value of a universal emergency number. The publicity from Haleyville's achievement prompted many other communities to begin implementing 911. The "first call" became a celebrated milestone, and Haleyville, AL still commemorates it with an annual 9-1-1 festival (Source: cityofhaleyville.com). This early success gave momentum to the fledgling system and showed that with cooperation between telephone companies and officials, 911 could work in practice – a huge leap from the concept stage to reality. - The Kitty Genovese Case (1964): Although occurring before 911 was established, the infamous murder of Kitty Genovese in New York City became a rallying point in discussions about emergency reporting (Source: smithsonianmag.com). Initial (and later challenged) news reports claimed that dozens of neighbors heard the victim's cries but did not call the police, allegedly due to apathy or confusion. This tragedy underscored the need for a better way for citizens to summon help and was cited by officials advocating for a central emergency number (Source: smithsonianmag.com). It highlighted the idea that smithsonianmag.com). It highlighted the idea that smithsonianmag.com). It highlighted the idea that smithsonianmag.com). It highlighted the idea that smithsonianmag.com). It highlighted the idea that smithsonianmag.com). It highlighted the idea that smithsonianmag.com). It highlighted the idea that smithsonianmag.com). It highlighted the idea that smithsonianmag.com). It highlighted the idea that smithsonianmag.com). It highlighted the idea that smithsonianmag.com). It highlighted the idea that smithsonianmag.com). It highlighted the idea that smithsonianmag.com). It highlighted the idea that smithsonianmag.com). It highlighted the idea that sm - History.com First 911 Call in the U.S. (1968) (Source: cityofhaleyville.com) (via EBSCO Research Starters) - Wikipedia "911 (Emergency Telephone Number)" (Source: en.wikipedia.org#::text=In%201967%2C%20the%20President%27s%20Commission,9) en.wikipedia.org#::text=In%201968%2C%20the%20number%20was,17) (Source: en.wikipedia.org#:~:text=Regarding%20national%20U,21); "999 Emergency Number (UK)" (Source: totalresponse.com); "112 Emergency Number (EU)" (Source: pubaffairsbruxelles.eu) - NENA (National Emergency Number Association) About NENA / History (Source: redskye911.com) (Source: njnena.org); 911 Statistics (via NENA/FCC) (Source: phys.org) (Source: nena.org) - National Academies (NAS) "Accidental Death & Disability" (1966) (Source: 911.gov) (as cited by 911.gov) - FCC Wireless E911 Rules (FCC Docket 94-102) and Kari's Law / RAY BAUM's Act info (Source: 911.gov) (Source: compliance.byuh.edu) - GAO Report (2024) Next Generation 911 Progress (Source: gao.gov) (Source: gao.gov) (Source: gao.gov) - ABC News / CNN Coverage of Parkland (2018) and Virginia Tech (2007) 911 issues (Source: <u>abcnews.go.com</u>)(Source: <u>phys.org</u>) (Source: <u>phys.org</u>) - Compliance.byuh.edu Kari's Law history (Source: compliance.byuh.edu) (Source: compliance.byuh.edu) - TotalResponse.com Evolution of 911 Call Taking (PowerPhone) (Source: totalresponse.com) (Source: totalresponse.com) - NGA 911 (NG9-1-1 provider blog) Origins of 911 Timeline (Source: nga911.com) (Source: nga911.com) - Iredell County, NC History of 9-1-1 (citing Wikipedia) (Source: iredellcountync.gov) (Source: iredellcountync.gov) - Phys.org / AFP "US to Modernize 911" (FCC Genachowski speech) (Source: phys.org) (Source: phys.org) - ABC News "How 911 Failures Hindered Parkland Response" (Source: abcnews.go.com) (Source: abcnews.go.com) - NPR / WBHM "How a Small Alabama Town Pioneered the First 9-1-1 Call" (2018) (Source: 911,gov) (Source: 911,gov) - GovTech.com _"50th Anniversary of 911" (Emergency Mgmt)_govtech.comgovtech.com (Eric Holdeman column) - CTIA.org "Recognizing 9-1-1 Heroes" (on 911 saves and awards) (Source: 911.gov) - Federal Register FCC Notice on NG911 (2023) (Source: federalregister.gov) (Source: ng911institute.org) Tags: 911, emergency communication, public safety, telecommunications history, emergency services, government policy # **About ClearlyIP** ClearlyIP Inc. — Company Profile (June 2025) #### 1. Who they are ClearlyIP is a privately-held unified-communications (UC) vendor headquartered in Appleton, Wisconsin, with additional offices in Canada and a globally distributed workforce. Founded in 2019 by veteran FreePBX/Asterisk contributors, the firm follows a "build-and-buy" growth strategy, combining in-house R&D with targeted acquisitions (e.g., the 2023 purchase of Voneto's EPlatform UCaaS). Its mission is to "design and develop the world's most respected VoIP brand" by delivering secure, modern, cloud-first communications that reduce cost and boost collaboration, while its vision focuses on unlocking the full potential of open-source VoIP for organisations of every size. The leadership team collectively brings more than 300 years of telecom experience. ### 2. Product portfolio - Cloud Solutions Including Clearly Cloud (flagship UCaaS), SIP Trunking, SendFax.to cloud fax, ClusterPBX OEM, Business Connect managed cloud PBX, and EPlatform multitenant UCaaS. These provide fully hosted voice, video, chat and collaboration with 100+ features, per-seat licensing, georedundant PoPs, built-in call-recording and mobile/desktop apps. - On-Site Phone Systems Including CIP PBX appliances (FreePBX pre-installed), ClusterPBX Enterprise, and Business Connect (on-prem variant). These offer local survivability for compliance-sensitive sites; appliances start at 25 extensions and scale into HA clusters. - IP Phones & Softphones Including CIP SIP Desk-phone Series (CIP-25x/27x/28x), fully white-label branding kit, and Clearly Anywhere softphone (iOS, Android, desktop). Features zero-touch provisioning via Cloud Device Manager or FreePBX "Clearly Devices" module; Opus, HD-voice, BLF-rich colour LCDs. - VoIP Gateways Including Analog FXS/FXO models, VoIP Fail-Over Gateway, POTS Replacement (for copper sun-set), and 2-port T1/E1 digital gateway. These bridge legacy endpoints or PSTN circuits to SIP; fail-over models keep 911 active during WAN outages. - Emergency Alert Systems Including CodeX room-status dashboard, Panic Button, and Silent Intercom. This K-12-focused mass-notification suite integrates with CIP PBX or third-party FreePBX for Alyssa's-Law compliance. - Hospitality Including ComXchange PBX plus PMS integrations, hardware & software assurance plans. Replaces aging Mitel/NEC hotel PBXs; supports guest-room phones, 911 localisation, check-in/out APIs. - Device & System Management Including Cloud Device Manager and Update Control (Mirror). Provides multi-vendor auto-provisioning, firmware management, and secure FreePBX mirror updates. - XCast Suite Including Hosted PBX, SIP trunking, carrier/call-centre solutions, SOHO plans, and XCL mobile app. Delivers value-oriented, high-volume VoIP from ClearlyIP's carrier network. #### 3. Services - Telecom Consulting & Custom Development FreePBX/Asterisk architecture reviews, mergers & acquisitions diligence, bespoke application builds and Tier-3 support. - Regulatory Compliance E911 planning plus Kari's Law, Ray Baum's Act and Alyssa's Law solutions; automated dispatchable location tagging. - STIR/SHAKEN Certificate Management Signing services for Originating Service Providers, helping customers combat robocalling and maintain full attestation. - Attestation Lookup Tool Free web utility to identify a telephone number's service-provider code and SHAKEN attestation rating. - FreePBX® Training Three-day administrator boot camps (remote or on-site) covering installation, security hardening and troubleshooting. - Partner & OEM Programs Wholesale SIP trunk bundles, white-label device programs, and ClusterPBX OEM licensing. #### 4. Executive management (June 2025) - CEO & Co-Founder: Tony Lewis Former CEO of Schmooze Com (FreePBX sponsor); drives vision, acquisitions and channel network. - CFO & Co-Founder: Luke Duquaine Ex-Sangoma software engineer; oversees finance, international operations and supply-chain. - CTO & Co-Founder: Bryan Walters Long-time Asterisk contributor; leads product security and cloud architecture. - Chief Revenue Officer: Preston McNair 25+ years in channel development at Sangoma & Hargray; owns sales, marketing and partner success. - Chief Hospitality Strategist: Doug Schwartz Former 360 Networks CEO; guides hotel vertical strategy and PMS integrations. - Chief Business Development Officer: Bob Webb 30+ years telco experience (Nsight/Cellcom); cultivates ILEC/CLEC alliances for Clearly Cloud. - Chief Product Officer: Corey McFadden Founder of Voneto; architect of EPlatform UCaaS, now shapes ClearlyIP product roadmap. - VP Support Services: Lorne Gaetz (appointed Jul 2024) Former Sangoma FreePBX lead; builds 24×7 global support organisation. - VP Channel Sales: Tracy Liu (appointed Jun 2024) Channel-program veteran; expands MSP/VAR ecosystem worldwide. #### 5. Differentiators - · Open-Source DNA: Deep roots in the FreePBX/Asterisk community allow rapid feature releases and robust interoperability. - White-Label Flexibility: Brandable phones and ClusterPBX OEM let carriers and MSPs present a fully bespoke UCaaS stack. - End-to-End Stack: From hardware endpoints to cloud, gateways and compliance services, ClearlyIP owns every layer, simplifying procurement and support. - Education & Safety Focus: Panic Button, CodeX and e911 tool-sets position the firm strongly in K-12 and public-sector markets. ### In summary ClearlyIP delivers a comprehensive, modular UC ecosystem—cloud, on-prem and hybrid—backed by a management team with decades of open-source telephony pedigree. Its blend of carrier-grade infrastructure, white-label flexibility and vertical-specific solutions (hospitality, education, emergency-compliance) makes it a compelling option for ITSPs, MSPs and multi-site enterprises seeking modern, secure and cost-effective communications. ### DISCLAIMER This document is provided for informational purposes only. No representations or warranties are made regarding the accuracy, completeness, or reliability of its contents. Any use of this information is at your own risk. ClearlyIP shall not be liable for any damages arising from the use of this document. This content may include material generated with assistance from artificial intelligence tools, which may contain errors or inaccuracies. Readers should verify critical information independently. All product names, trademarks, and registered trademarks mentioned are property of their respective owners and are used for identification purposes only. Use of these names does not imply endorsement. This document does not constitute professional or legal advice. For specific guidance related to your needs, please consult qualified professionals.