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Building Open-Source Voice Bots: ASR
Technology Overview
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Building a State-of-the-Art Open-Source
Voice Bot: A Comprehensive Guide

1. Automatic Speech Recognition (ASR)

Open-source ASR technology forms the first stage of a voice bot pipeline, converting spoken audio

into text. Modern ASR models are typically neural networks trained on vast speech datasets.

OpenAI Whisper is a recent transformer-based model trained on 680k+ hours of multilingual data,

achieving state-of-the-art accuracy on many benchmarks deepgram.comdeepgram.com. Whisper
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comes in various sizes (Tiny to Large) balancing accuracy and speed; larger models yield lower

word error rates (WER) but require more compute (GPUs for real-time use). Kaldi, by contrast, is a

classic open-source toolkit using a modular HMM/DNN pipeline; itʼs highly customizable and

supports training your own models, but its older architecture struggles to match modern end-to-end

systems on open-domain audio deepgram.com. Vosk (from Alpha Cephei) builds on Kaldi with

ready-to-use offline models in many languages (English, Chinese, Spanish, etc.), ranging from

lightweight 40MB models up to 3GB for higher accuracy medium.com. Vosk is optimized for edge

devices (even mobile or Raspberry Pi) and provides simple Python/C++ APIs for real-time

transcription. Other notable open ASR projects include Facebookʼs wav2vec 2.0 (self-supervised

transformer models) and NVIDIA̓s NeMo QuartzNet models. In a comparative study, transformer

models like Whisper significantly outperformed Kaldi on real-world speech: “the Kaldi model

produces pathologically bad WERs… the conventional pipeline model simply cannot compete” in

long-form audio tests deepgram.com. A robust wav2vec 2.0 model achieved better accuracy than

Kaldi but “significantly worse [WER] than Whisper across all domains” deepgram.com. Simpler

architectures (e.g. QuartzNet in NeMo) can offer fast inference; one benchmark found NeMoʼs

QuartzNet had the fastest transcription time and high accuracy on clean audio, whereas Vosk was

“less accurate and slower” than other neural models medium.com.

Training and Customization: Open-source ASR toolkits enable training or fine-tuning models on

custom data. Kaldi provides recipes for training acoustic and language models from scratch given

transcribed audio corpora. Mozillaʼs DeepSpeech (an older end-to-end model) similarly “comes

with a few pre-trained models and allows you to train your own” rasa.com. Modern end-to-end

models (Whisper, wav2vec, SpeechBrain) can be fine-tuned via transfer learning – e.g., a pre-

trained model is adapted on domain-specific audio to improve accuracy on that domain jsaer.com.

This is crucial if your botʼs use-case involves specialized vocabulary or accents. Whisperʼs code is

open-source, and while OpenAI didnʼt release a training script, the community has developed fine-

tuning approaches. NVIDIA NeMo and Facebookʼs Fairseq provide scripts to fine-tune wav2vec or

QuartzNet models on custom data. Vosk/Kaldi models can be adapted by training new n-gram

language models or using Kaldiʼs chain models with your data. These open frameworks thus offer

flexibility: you can use pre-trained models out of the box or invest in training custom models for

higher accuracy in your domain jsaer.com.

Deployment: ASR models can be deployed locally or as services. Whisper and Vosk have Python

APIs to transcribe audio files or microphone input in real-time. For scalable deployments, they can

run in a server process (for example, Vosk provides a socket server mode and even Docker images

per language). Kaldi can be integrated as a C++ library or served via REST in frameworks like KALDI

GStreamer server. When deploying ASR, consider real-time processing needs: streaming ASR
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(outputting partial results as speech is received) can greatly reduce latency for long utterances.

Toolkits like Kaldi and Vosk support streaming decoding with voice activity detection. Whisper as

released processes audio in blocks (not truly streaming), though smaller Whisper models

(Tiny/Small) are fast enough for near-real-time transcription on GPUs. Resource requirements:

Accuracy improvements often come at the cost of higher computation. For instance, Whisperʼs

largest model (1.5B parameters) may add hundreds of milliseconds of latency developer.nvidia.com,

so for real-time bots a medium or small model on GPU is a common trade-off. In summary,

developers should choose an ASR engine that balances accuracy, language needs, and runtime

performance – e.g. Whisper for best accuracy across many languages, Vosk/Kaldi for lightweight

offline use, or wav2vec/QuartzNet models for a middle ground. It's also critical to consider preparing

your LAN for a VoIP Phone System Deployment to ensure optimal performance for real-time voice

applications.

2. Natural Language Understanding (NLU)

Once user speech is transcribed to text, the NLU component interprets the text to understand the

userʼs intent and extract any key information. This step typically involves Intent Recognition

(classifying which action or query the user wants) and Entity Extraction (identifying words/phrases

representing key details like names, dates, amounts, etc.) botfriends.de. Open-source NLU

frameworks greatly simplify this stage. Rasa Open Source (specifically the Rasa NLU module) is a

popular choice that provides intent classification and entity extraction out-of-the-box. Rasa NLU

uses a configurable pipeline of processors to turn user messages into intents and entities rasa.com.

Developers can plug in different components – for example, a spaCy model for tokenization &

named entity recognition, or a BERT-based classifier for intent – to tailor the NLU pipeline to their

data. In fact, “the structure of the Rasa NLU is fully configurable and defined with the help of the

so-called pipeline”, which can use either a spaCy backend (leveraging pretrained language models)

or a TensorFlow backend (training neural network classifiers) botfriends.de. Rasa NLU supports

multi-intent detection and provides prebuilt entities (e.g. common datetime or numeric extractors)

while also allowing custom entity definitions trained on examples botfriends.de.

Other open-source NLP libraries complement or can even replace Rasaʼs NLU in certain cases.

spaCy, a general-purpose NLP library, offers industrial-strength named entity recognition models

for many languages, part-of-speech tagging, and efficient text processing. spaCy can be used

within Rasa (via the SpacyTokenizer and SpacyEntityExtractor components) or standalone – for

example, one could use spaCy to detect entities in user text (like addresses, organizations, etc.)

with its pre-trained models botfriends.de. However, spaCy doesnʼt natively do intent classification;
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you would pair it with a classifier (it does have a text categorizer component or one could use scikit-

learn or Haystack etc.). Haystack (by deepset) is another open-source framework relevant to NLU,

particularly for question-answering and retrieval-based understanding. Haystack provides modular

pipelines to perform retrieval augmented QA, semantic search, and even conversational question

answering over documents github.com. In a voice bot context, Haystack could be integrated to

handle queries that require searching a knowledge base. For example, if a user asks a factual

question, the botʼs DM could invoke a Haystack pipeline that retrieves relevant documents and finds

an answer span. This essentially extends NLU to not just classify intent but understand and answer

open-domain questions using retrieved knowledge – a powerful capability using only open-source

models (Haystack can leverage Transformers like DPR for retrieval and BERT for extractive QA).

Beyond these, developers can leverage Hugging Face Transformers to build custom NLU

components. Fine-tuning a language model (like BERT, DistilBERT, or even GPT-2) on an intent

classification dataset often yields high accuracy for intent recognition. There are also open-source

pre-trained models for intent detection and slot filling (for instance, on the SNIPS or ATIS datasets)

that can be adapted. Libraries like DeepPavlov (an open-source conversational AI library) offer

ready-made NLU modules as well – e.g., intent classifiers and entity extractors for Russian and

English, which could be useful in certain languages. Snips NLU (an older open-source library from

the Snips voice assistant project) is another example; it focused on offline intent/entity parsing with

lightweight models. While Snips is no longer maintained, its ideas (embedding-based intent

classification and regex/dictionary-based entities) influenced many modern systems.

In summary, open-source NLU provides the tools to parse user utterances into structured data. A

typical configuration might use Rasa NLUʼs machine learning pipeline to recognize intents (with an

algorithm like the DIET classifier or a Transformer) and extract entities (using built-in CRF or spaCy),

possibly supplemented by specialized components (e.g., Duckling for dates and numbers, which

Rasa can integrate). With these tools, the voice bot can convert the raw text “Book a flight from NYC

to London tomorrow” into a machine-readable intent ( BookFlight ) with entities like origin: NYC ,

destination: London , date: tomorrow . This structured output then feeds into the dialogue

manager for the next step.

3. Dialogue Management (DM)

Dialogue Management is the “brain” of the voice bot, responsible for maintaining conversational

state, deciding how to respond, and orchestrating the conversation flow. Unlike single-turn NLU, DM

handles context and multi-turn logic: it must track what the user has said previously, what the bot
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has done, and what needs to happen next to fulfill the userʼs goal. Open-source frameworks provide

two main paradigms for DM: rule-based/state machine approaches and ML-based policy

learning.

Rasa Core (the dialogue component of Rasa) is an example of a machine-learning policy approach.

It maintains a dialogue state (a tracker store with the conversationʼs slot values, intent history, etc.)

and uses policies (which can be learned from example dialogues or hand-crafted rules) to choose

the next action. Rasaʼs core policies include a TED Policy (Transformer Embedding Dialogue) that

learns to predict the next bot action based on the conversation history, and rule-based policies for

handling things like FAQs or forms. “Rasa… consists of Rasa NLU (for intent recognition and entity

extraction) and Rasa Core (for managing conversations)”, using “machine learning-based policies

for dialogue management.” keencomputer.com. This means that given training stories (example

conversations), Rasa can generalize to unseen dialogues and decide, for instance, to prompt for

missing info or handle clarification questions. Rasaʼs DM is highly configurable – developers can

impose rules (e.g. always ask for confirmation if a price is above X) alongside the ML policies,

achieving a blend of consistency and learning. Importantly, Rasa Core keeps track of slots (key

pieces of info filled during the dialogue) and conversation intents to maintain context (for example,

remembering the userʼs name mentioned earlier to use later, or carrying over an implicit context like

the current topic). This enables handling context-dependent queries (“next week” meaning next

weekʼs schedule given the earlier context of scheduling, etc.).

Botpress is a prominent open-source platform that exemplifies the state-machine approach with a

visual builder. Botpress is built on Node.js and uses a modular plugin architecture

keencomputer.com. Conversations in Botpress are designed as flows or graphs: you define nodes

(questions, messages) and transitions based on user intents or entities. Essentially, Botpress “uses

a state machine for managing conversation flows” keencomputer.com. This approach is very

intuitive for well-defined tasks – itʼs like drawing a flowchart of the dialogue. Botpress provides a

GUI where non-programmers can design conversation paths, which is great for straightforward FAQ

bots or form-filling dialogues. The trade-off is that purely flow-based bots can be rigid; handling

unexpected user input requires defining many transitions or fallback handlers. Thatʼs where

Botpress can integrate with NLU (it can use its built-in NLU or connect to Rasa, Dialogflow, etc.) to

trigger different flows. Overall, Botpress is ideal if you want a low-code solution with quick setup,

while Rasa is better suited for ML-heavy, complex dialogues requiring learning and flexibility

keencomputer.com.
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Other open DM frameworks include Microsoft Bot Framework SDK (open-source libraries for

building dialog logic in C#/Python, albeit often used with Microsoftʼs LUIs or QnA Maker for NLU),

Dialogflow CX (Googleʼs, not open-source though), and academic projects like OpenDial or

DeepPavlov Conversational Framework. There is also interest in end-to-end dialogue models

(where a single neural model decides the response given conversation history, often used in open-

domain chatbots). However, for a state-of-the-art voice assistant on open tech, a pipeline approach

(explicit NLU -> DM -> NLG) is preferred for control and transparency.

In managing dialogue, key tasks include context tracking (remembering what the user said before;

e.g., in slot-filling, which slots are already filled), decision logic (maybe the bot should branch to a

sub-dialog to clarify something), and integration with backend services. For example, if a user asks

“What's my bank balance?”, the DM must recognize the intent, ensure security (maybe the user is

authenticated), then call an API to retrieve the balance, and finally decide to respond with that info.

Open-source DM frameworks allow custom code for such integrations: Rasa has the concept of

actions (Python code that can be triggered to perform operations like database queries) and

Botpress allows hooking into actions or APIs at certain nodes. Managing conversational state often

means maintaining a dialogue memory – this could be as simple as a dictionary of slots (in task-

oriented bots) or more complex like a dialogue state vector. Some frameworks separate a Dialog

State Tracking (DST) component (especially in research literature), but in practice Rasa/Botpress

incorporate state tracking internally (Rasaʼs tracker, Botpress context variables).

Context handling also means the bot should handle references and follow-ups. For instance, in a

multi-turn exchange: User: "Find Italian restaurants in downtown." Bot: "Sure, for what date?" User:

"Tomorrow at 7." – the second user utterance doesnʼt repeat the context (“restaurants in

downtown”) explicitly, but the DM must remember it. Rasa would have kept that info in a slot (e.g.,

cuisine=Italian , location=downtown ) and not ask again, proceeding to make a reservation

perhaps. Good DM design uses context to make interactions smooth – perhaps using context

carryover and disambiguation if needed.

In summary, open-source DM solutions like Rasa Core and Botpress enable robust conversational

logic: Rasa uses ML policies and supports complex contextual assistants trained on real dialogues

keencomputer.com, whereas Botpress favors a deterministic flow approach with a user-friendly

interface keencomputer.com. Both can manage state, call external services, and handle multi-turn

interactions. A state-of-the-art voice bot might even combine approaches – e.g., using Rasaʼs ML

for general conversation, but with some hard-coded rules for critical business logic (or using
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Botpress for certain guided flows embedded in a larger Rasa assistant). The result is a dialogue

manager that can flexibly navigate conversations, keep track of context, and decide the botʼs

actions to achieve successful outcomes.

4. Natural Language Generation (NLG)

Natural Language Generation is the component that produces the botʼs reply in fluent, natural

language. After the Dialogue Manager decides what the bot should do or say next (for example, it

might decide “inform the user of their account balance”), the NLG module formulates the actual

textual response to be spoken. There are two main approaches to NLG in voice bots: template-

based (rule-based) generation and generative model-based generation.

Template-Based NLG: This is a straightforward method where responses are constructed from

pre-defined templates with slot placeholders. For example, a template for a balance query might be

"Your current balance is $[balance]."  – the bot will fill in the [balance]  with the actual

number. Rule-based generation can also include conditional logic (e.g., slight grammatical variations

if a value is plural vs singular). This approach is reliable and ensures the responses are precise and

on-brand, which is why many task-oriented assistants still use templated responses for critical

information. Rasa, for instance, encourages defining response templates in the domain file (or

response selector); each intent/action can be mapped to one or multiple text templates. The

advantages are clarity and control: you wonʼt get a weird or incorrect phrasing because you wrote

the template. The downside is limited variety and inability to handle truly free-form conversations.

Nonetheless, for many domains (support bots, transactional bots), templated NLG suffices. You can

author a variety of phrases for each intent to introduce some randomness, but itʼs still a closed set

of responses.

Generative NLG (Neural Models): With advances in NLP, itʼs possible to have a neural network

generate responses in an open-ended way. Large Language Models (LLMs) and sequence-to-

sequence models can take a dialogue context and generate a continuation. Open-source examples

include DialoGPT (a chatbot model from Microsoft trained on 147M Reddit conversations) which is

“a GPT-2 model… powerful in open-domain dialogue systems.” huggingface.co. Another is

Facebookʼs BlenderBot (e.g., BlenderBot 2.0 with long-term memory) which was open-sourced and

can carry on extended conversations. For smaller-scale local deployments, one might use a distilled

version of such models (for example, a 90M parameter DialoGPT or a 400M BlenderBot) to generate

varied responses. The benefit of generative NLG is the flexibility – the bot can handle inputs that

werenʼt anticipated by templates, and can produce more conversational, contextually rich replies.
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This is particularly useful in social-chat or open-domain scenarios (like an assistant that can chit-

chat or answer off-the-cuff questions). However, generative NLG comes with challenges: it may

produce incorrect or irrelevant outputs if not carefully constrained, and it requires significant

computational resources. In a voice bot, using a large generative model might introduce latency (a

few hundred milliseconds or more to generate a response) which can affect real-time performance.

A practical strategy is often a hybrid: use templated or retrieval-based responses for known intents

(ensuring accuracy for task-specific content), and perhaps use a generative model fallback for

unhandled queries or casual conversation. There are open-source projects that enable this – for

instance, Rasa allows integration of custom action code, so one could call an open-source model

like GPT-J or an OpenAI GPT-2 model (running locally via HuggingFace) to generate a response

when no rule matches an intent. Another approach is retrieval-based NLG where the system

selects the best response from a repository of candidate responses (this can be powered by

embedding similarity; itʼs like an FAQ matcher but for full sentences).

When using open-source generative models, ensure you have appropriate filters or constraints to

avoid unwanted outputs, since these models can sometimes produce inappropriate or hallucinated

content. Fine-tuning them on your domain dialogs (if data is available) can also improve relevancy

and safety. An example open project is ParlAI by Facebook, which contains recipes for training

dialogue models and even some pre-trained conversational models that you can run.

In summary, NLG in a state-of-the-art voice bot can range from simple and safe (templates) to

sophisticated and flexible (neural generation). For many enterprise voice assistants, consistency

and reliability are paramount, so a controlled NLG (templated with slight variations) is used for

transactional dialogues. In more open-ended AI assistants (think of Alexaʼs casual mode or a

customer engagement bot), incorporating a generative model can make the bot feel more natural

and less repetitive. All of this can be achieved with open-source tools: you might use Rasaʼs

Response Selector or template system for the bulk of replies, and leverage open-source

Transformer models (DialoGPT, etc.) for small talk or unforeseen queries. Just remember to evaluate

the outputs carefully – the goal is a coherent, contextually appropriate response that the TTS can

then speak out.

5. Text-to-Speech (TTS)

Text-to-Speech is the final stage of the voice bot pipeline, converting the text response into audible

speech for the user. The landscape of open-source TTS has advanced significantly in recent years,

with neural network-based TTS models achieving natural, human-like speech quality. Key factors to
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consider in TTS are voice quality (naturalness and clarity), latency (how quickly speech can be

generated), and multilingual/support for custom voices.

Coqui TTS (and Mozilla TTS): Coqui TTS is a leading open-source TTS toolkit, which originated

from Mozillaʼs TTS project. It provides a framework to train and run state-of-the-art TTS models

(like Tacotron 2, FastSpeech2, VITS, etc.) and comes with many pre-trained voices in different

languages. Coqui TTS supports voice cloning (training a new voice given a small sample, though

quality varies) and multi-speaker models. Using Coqui, one can generate fairly natural speech; for

best quality it supports VITS models, which produce very realistic prosody tderflinger.com. Coqui is

a powerful toolkit, but note that as of late 2024, it faced uncertainty in commercial backing (the

original Mozilla project ended, and Coqui as a company had to rely on community support)

tderflinger.com. Nevertheless, the open-source community continues to maintain it. The latency of

Coqui models depends on size – some smaller models can run real-time on CPU, while bigger ones

may need GPU for faster-than-real-time synthesis.

Piper: Piper is an emerging open-source TTS engine focused on efficiency. Itʼs developed in the

context of the Rhasspy voice assistant project. Piper uses lightweight neural models (based on

efficient architectures) and is optimized for speed and low resource usage. According to one review,

“from the four tested open source text-to-speech applications, my favorite is clearly Piper. It has the

most natural sounding speech.” tderflinger.com. Piper models are small and can run on devices like

Raspberry Pi 4, making them ideal for edge deployments. Despite its efficiency, Piperʼs audio quality

is impressively natural (it uses techniques like quantization and optimized vocoders). It may not have

as many languages or voices as Coqui, but it covers major ones and the community is growing. For

example, Piper offers English voices that are nearly human-like in intonation and timbre, all with

inference speeds that can easily achieve low latency on CPUs.

Mycroft Mimic 3: Mimic 3 is another open-source neural TTS, created for the Mycroft AI assistant.

It supports SSML, multiple voices, and an interactive mode. However, as an open project it saw

limited updates (last major commits were a few years ago) and itʼs under an AGPL license

tderflinger.com. Quality-wise, Mimic3 voices are decent and it was designed to be run on-device for

privacy (it can run on a Raspberry Pi for example). Given its maintenance status, developers might

prefer Coqui or Piper unless they specifically need something from Mimic3.

Older / Other TTS: There are legacy TTS engines like eSpeak NG and Festival which are fully

open-source. eSpeak NG covers 100+ languages, is extremely lightweight (written in C), and can run

on tiny devices tderflinger.com. But it produces robotic-sounding speech that lacks the natural

prosody of neural TTS. Such engines might be considered if you need ultra-fast, resource-minimal

TTS or support for a less common language not covered by neural models (since eSpeak can at
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least pronounce many languages albeit mechanically). Festival/Flite are similar category (unit-

selection or formant synthesis based), better than nothing but not human-like. Another noteworthy

project is Tortoise-TTS – an open-source high-end TTS that can mimic voices with remarkable

quality, but itʼs very slow (not suitable for real-time use, more for offline generation of longer

speeches where quality is paramount).

Voice Quality and Latency: Neural TTS models are evaluated by metrics like Mean Opinion Score

(MOS) from human listeners. Many open TTS systems can achieve MOS in the 4.0+ range (out of 5)

which indicates high naturalness, close to human speech zilliz.com. Quality depends on training

data (hours of recorded speech per voice) and model architecture. Models like VITS (which Coqui

uses) generate speech end-to-end and can capture subtle prosodic elements. On the latency front,

there are models designed for speed: FastSpeech2 and Multi-band MelGAN or HiFiGAN vocoders

can generate speech much faster than real time. For example, generating one second of audio

might take only 0.1s of processing on a modern CPU for a small model. When deploying a voice bot,

one must ensure the TTS is fast enough so that there isnʼt a long gap after the bot decides on a

response. Generally, a well-optimized TTS can produce audio on-the-fly, so the user perceives

almost immediate response. If using larger models, running on a GPU or doing some optimizations

(quantizing the model to 8-bit, etc.) can help. Open-source tools allow these tweaks: e.g.,

converting a PyTorch model to ONNX and using accelerated inference engines.

Multilingual and Custom Voices: Many open TTS solutions support multiple languages, but you

often need specific models for each language. Coquiʼs model zoo, for instance, has community-

contributed models for Spanish, German, Chinese, and more. If your voice bot needs to speak

multiple languages, you might load different models or a multi-lingual model (some TTS models are

trained on multiple languages, but quality might vary per language). Custom voice creation (to have

a unique persona for your assistant) is possible with open source: you can train a model on a new

voice if you have recordings. Projects like YourTTS (from Coqui) show zero-shot or low-shot voice

cloning – giving the model a sample of a new speaker and synthesizing that voice. While open

methods for voice cloning exist, the quality might not equal proprietary services like Googleʼs or

Amazonʼs, but itʼs improving. Keep in mind, creating a high-quality voice can require a substantial

dataset (hours of clean recordings) and training time.

In conclusion, open-source TTS has you covered from high-quality neural voices (Coqui TTS, Piper)

to ultra-lightweight engines (eSpeak). A state-of-the-art open voice bot would likely use a neural

TTS for natural interaction. For example, you might run Coqui TTS with an English VITS voice for a

near-human voice, achieving a pleasant user experience. If deploying on an embedded device, Piper

or a smaller model could be used to ensure quick response. Itʼs also wise to have a backup or error-

https://go.clearlyip.com/?utm_source=pdf
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handling – e.g., if the TTS fails or is too slow at the moment, an emergency fallback could be a pre-

recorded phrase or a simpler TTS engine so the bot always responds. Thankfully, with open tools,

you have full control over the voice output and can tune the system (pick a voice with the right

gender/tone, adjust speaking rate, add SSML for effects, etc.) to create the desired persona for your

voice assistant.

6. Pipeline Architecture: Integrating ASR, NLU, DM, NLG, and

TTS

Building a complete voice bot requires connecting all the components – from the userʼs

microphone input to the speaker output. The architecture typically follows a sequential pipeline:

audio input -> ASR -> NLU -> Dialogue Manager -> NLG -> TTS -> audio output. In a real system,

these components can be separate services or libraries within one application. The integration must

handle real-time streaming and maintain the conversation state across turns.

! https://developer.nvidia.com/blog/creating-voice-based-virtual-assistants-using-nvidia-riva-and-

rasa/

Figure: High-level architecture of a voice assistant pipeline (example from an open-source stack

combining Rasa and Nvidia Riva). The userʼs voice input (left) is sent to an ASR service which

returns a transcript. The text is then passed to the NLU/DM (in this case, Rasaʼs components) which

determine the appropriate response. The response text is finally sent to a TTS service to generate

audio, which is played back to the user. developer.nvidia.com

In a typical interaction, the following steps occur: (1) The user presses a push-to-talk or says a wake

word (like “Hey MyAssistant”) to activate listening. The client application (which could be a mobile

app, web app, or IoT device) captures the audio from the microphone. (2) The raw audio stream is

sent to the ASR component. If using a streaming ASR, this happens in real-time over a socket or

streaming API, and partial text results might be returned as the user speaks. If using a non-

streaming ASR, the system might first perform VAD (voice activity detection) to determine when the

user has finished speaking (silence detection), then send the complete audio for transcription. (3)

The ASR outputs text (the recognized transcription). The architecture then passes this text to the

NLU. In a modular system, the client might send the text to an NLU service or library call. For

instance, a “Rasa NLU server” could be running that accepts the text and returns an intent and

entities JSON. In other setups, this NLU step is embedded in the dialogue manager process. (4) The

Dialogue Manager receives the structured input (or raw text if it combines NLU internally) and

https://go.clearlyip.com/?utm_source=pdf
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updates the conversation state. It decides on the next action – which could be to fetch some info,

ask a follow-up question, or formulate a final answer. This often involves policy rules, database/API

calls, etc., as discussed earlier. (5) The DM produces a response in text form. This might be

selecting a template or using NLG to generate the text. For example, the DM might know the intent

is “WeatherQuery” and it fetched “22°C” as the result, then it chooses a response template: “The

current temperature is 22 degrees.” (6) This response text is handed to the TTS component for

synthesis. The TTS generates an audio waveform (e.g., a WAV or byte stream). (7) Finally, that audio

is played to the user through the client applicationʼs speaker. The user hears the botʼs answer.

All these components need to work in concert, ideally with minimal delay to preserve a smooth

conversational experience. One key consideration is real-time vs batch processing. For a voice

assistant, real-time (or near real-time) processing is required so that the conversation feels natural.

Each turn of the dialogue often should be processed in under a second (a common goal is the “<

300ms ASR + < 300ms NLU/DM + < 300ms TTS” kind of budget, since humans notice delays

beyond ~0.2s developer.nvidia.com). Achieving this might involve processing audio as it streams

(so-called streaming ASR that can start producing text before the user finished talking). Some

systems even do barge-in handling, where the assistant can start formulating a response before the

user finishes (though this is advanced). In contrast, batch processing might be used for offline tasks

like transcribing voicemails or analyzing recorded calls – there, latency isnʼt critical, and you might

trade speed for higher accuracy by using a bigger model.

Integration Patterns: In designing the architecture, you can choose between a monolithic design or

microservices. Monolithic would mean you have a single application that handles audio input, calls

an ASR library, then processes NLU/DM, etc., internally. This is simpler and avoids network overhead

between components, but harder to scale individual parts. The microservice approach treats each

component as a separate service with a defined API. For example, you might have: an ASR service

(accepts audio, returns text), an NLU/DM service (accepts text, returns response text – essentially a

complete chatbot brain that outputs a reply given an input), and a TTS service (accepts text, returns

audio). In the example architecture above, NVIDIA̓s Riva services were used for ASR and TTS, and

Rasa handled NLU and DM developer.nvidia.com. A thin connector or orchestrator component

(sometimes called a “middleware” or “voice gateway”) is often used to route between them. In

Rasaʼs voice interface demo, for instance, they implemented a connector that takes the audio from

the frontend, sends it to DeepSpeech ASR, then sends the text to Rasa and gets the response, then

calls TTS and returns the audio to the frontend rasa.comdeveloper.nvidia.com. This connector could

be implemented with synchronous calls or an asynchronous messaging system.

https://go.clearlyip.com/?utm_source=pdf
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Scaling and Robustness: In a production setting, you may have many users interacting

concurrently. The architecture should allow scaling the heavy components – ASR and TTS are

typically the most CPU/GPU intensive. If using microservices, you could run multiple instances of the

ASR service behind a load balancer to handle parallel audio streams. Similarly, multiple TTS workers

can generate audio in parallel. Dialogue Management (NLU/DM) often can handle many sessions in

one process (especially if itʼs just waiting on I/O or doing lightweight ML), but if using large NLU

models, that too can be scaled out. Using a cloud-native approach (see Deployment section) with

container orchestration (Kubernetes) can automate this scaling.

Real-Time Communication: The interfaces between components can be RESTful (HTTP APIs) or

streaming protocols. For example, if the user is speaking for a long time, a streaming gRPC or

WebSocket connection to the ASR service can continuously send partial transcripts, which could

even allow the NLU/DM to start processing before the user finished (though few systems do truly

incremental NLU). For simpler designs, itʼs fine to wait until end-of-speech, then send one HTTP

request: audio -> text. The DM can be request-response as well (input text -> output text). The TTS

might be request-response (text -> audio). The client app likely maintains a WebSocket to the

server to send audio and receive audio (for low latency, as opening new HTTP connections for each

audio stream could add overhead). Some open solutions like DeepSpeech have a streaming API,

and projects like Kaldi have online decoding with websockets through variants like kaldinet. There

are also specialized message brokers (MQTT, RabbitMQ, etc.) that can be used in IoT scenarios to

send audio data and receive responses asynchronously, which is useful for edge deployments.

Finally, error handling and fallback need consideration in the architecture. If ASR fails to return

anything (maybe due to noise or an unrecognized utterance), the system should handle that (e.g.,

ask the user to repeat). If NLU yields low confidence for an intent, the DM might trigger a

clarification. These decisions can be part of the DM logic (for instance, Rasa has a fallback policy for

low NLU confidence). The pipeline should propagate metadata too – e.g., the ASR could output a

confidence score or alternative hypotheses; an advanced DM could utilize those (for example, “Did

you say play The Beatles?” if itʼs unsure between Beatles and something else). Designing the

interfaces with such information in mind can improve the robustness of the voice bot.

In summary, the pipeline architecture binds together ASR, NLU, DM, NLG, TTS into a cohesive

system. The goal is to make this integration seamless so the user just experiences a fluid

conversation. By using open-source components, you have the freedom to customize each link in

the chain and optimize how they communicate. Whether itʼs a simple single-machine setup or a

distributed cloud deployment, the principles remain: capture voice, transcribe to text, understand

intent, decide response, generate text, synthesize voice – all as quickly and accurately as possible.

https://go.clearlyip.com/?utm_source=pdf
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7. Performance and Optimization

Building a SOTA voice bot is not just about getting the components to work – they must work

efficiently. Latency and throughput are critical. A voice assistant should ideally respond in under a

second for a snappy experience; any latency above ~200–300 milliseconds in each stage can

become noticeable to users developer.nvidia.com. There are several strategies to optimize

performance across the pipeline:

Model Size vs. Speed Trade-offs: Often there is a trade-off between accuracy and speed. For

ASR, Whisper large might give the best accuracy but has a slower inference time than Whisper

small or medium. You might choose a smaller model if it meets accuracy requirements to gain

speed. Similarly, for NLU if youʼre using a Transformer for intent, a DistilBERT might be faster

(with slightly lower accuracy) than a full BERT. Evaluate what model size truly suffices for your

domain – sometimes a tiny model fine-tuned on in-domain data can outperform a huge generic

model on that specific task.

Quantization and Model Optimization: Converting neural network weights from float32 to int8

or int16 (quantization) can dramatically speed up inference and reduce memory, often with

minimal accuracy loss. For example, quantizing an ASR acoustic model or a TTS model can

improve CPU inference times, which is valuable if you deploy on commodity hardware play.ht.

Tools like ONNX Runtime, TensorRT (NVIDIA), or open-source quantization libraries can help.

Additionally, techniques like pruning (removing redundant neurons) or knowledge distillation

(training a smaller model to mimic a larger one) are viable open-source strategies to shrink

model sizes.

Streaming and Parallelism: Utilize streaming where possible. A streaming ASR that processes

audio on the fly can output partial results and effectively pipeline the processing (overlapping

with the userʼs speech). This can cut perceived latency because by the time the user finishes

talking, a transcript is nearly ready. On the TTS side, one could start playing the beginning of

the audio while the rest is still being generated (some TTS architectures allow chunked

synthesis). Also consider parallelism: if your pipeline is microservice-based, the ASR, DM, and

TTS could potentially run in parallel for different users. Within a single request, one canʼt

parallelize sequential dependencies, but you can ensure, say, the TTS for user1 is synthesizing

while user2ʼs ASR is decoding – meaning having enough instances/threads to handle multiple

interactions concurrently.

https://go.clearlyip.com/?utm_source=pdf
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Hardware Acceleration: GPUs or specialized accelerators (like NVIDIA TensorRT cores, Google

TPUs for some models, or even smaller AI chips for edge) can drastically improve performance.

For instance, running ASR and TTS on GPUs was shown to meet real-time requirements easily

developer.nvidia.com. If you expect a high volume of traffic or need minimal latency, invest in

hardware for the heavy parts (ASR and TTS typically). Also, if using CPU, make use of

vectorized operations (like Intel MKL or ARM NEON optimizations). Open-source libraries often

can detect and use these – e.g., PyTorch or TensorFlow will utilize AVX2/FMA on modern CPUs.

Batching and Caching: In server scenarios, you might batch multiple requests to better utilize

hardware, though this is more applicable to throughput than single-interaction latency. For

example, if using a GPU ASR service, it could transcribe N audio streams in parallel as a batch

for efficiency, but this introduces a slight delay to collect the batch. Itʼs a trade-off: high

throughput vs. low latency. For a voice assistant where latency is key, you usually process each

request ASAP (no batching), except maybe in TTS if you want to generate multiple sentences

together for efficiency. Caching can help if the system has repetitive queries – e.g., if many

users ask the same question, caching the ASR result might not apply (audio varies), but caching

an NLU or database query result or even a synthesized TTS audio for a common phrase (“Iʼm

sorry, I didnʼt catch that”) could avoid recomputation. Some voice bots cache the audio of

frequent prompts to play them instantly.

Optimizing Dialogue Flow: Performance isnʼt just raw compute – the design of conversations

matters. If the botʼs logic causes unnecessary turns, it feels sluggish to the user. For example,

asking too many clarification questions will extend the overall interaction time. So, optimizing

the dialogue policy (combining steps when possible, using confirmations smartly) improves

the perceived performance of the system. This is more on the design side, but itʼs worth

mentioning that a crisp dialogue that does in 2 turns what another bot does in 4 turns will feel

faster and more “intelligent.”

Monitoring and Benchmarking: Itʼs crucial to monitor latency of each component in real

deployments. Tools can log how long ASR took for each utterance, how long NLU/DM took

(which might be tiny, say 10ms, or more if using heavy NLU models), and TTS time. This helps

identify bottlenecks. Perhaps you find that 95% of the time is spent in ASR for long utterances –

then focusing on speeding up ASR (or limiting input length) might be key. If TTS is the

bottleneck, maybe use a faster vocoder or a lower sampling rate output.

Accuracy vs. Latency trade-offs: Thereʼs also a balance between making the system fast and

making it correct. Sometimes you might favor a slightly slower but more accurate ASR for

complex language input to avoid misrecognitions that lead to error handling (which ultimately

https://go.clearlyip.com/?utm_source=pdf
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slows the conversation more). Or you might implement a two-pass approach: a quick first-pass

ASR to get something out, and then a second-pass refine if needed (some systems do a quick

greedy decode then a slower re-score for final output – though this is more complexity). The

key is to ensure the user doesnʼt feel a lag. If an operation is slow but unavoidable (like a long

external API call to fetch info), the DM can be optimized to handle that by playing a “typing

indicator” or a brief “Let me check that for you…” prompt, which at least engages the user

during the wait.

In conclusion, performance tuning is an ongoing effort. By using open-source tools, you have the

advantage of transparency (you can dig into code to remove inefficiencies or adjust parameters).

Measure the WER of your ASR and the latency; measure the accuracy of NLU on real queries;

measure end-to-end conversation success rates. Then optimize bottlenecks: maybe itʼs as simple

as using a GPU, or as involved as retraining a smaller model. The end goal is a voice bot that feels

responsive and accurate, achieving an optimal blend of speed and intelligence. As one guide noted,

the best systems must “respond with the accurate answer in almost real time”, as even a few

hundred milliseconds added can hamper user experience developer.nvidia.com. Keep that ethos in

your optimization efforts.

8. Evaluation and Benchmarking

To ensure your voice bot is truly state-of-the-art, rigorous evaluation of each component is

essential. We need to measure how well the ASR is transcribing, how correctly the NLU is

understanding, how effectively the DM is driving conversations, and the quality of TTS outputs. Here

are the key metrics and methods for evaluating each part:

ASR Evaluation: The primary metric for speech recognition is Word Error Rate (WER)

jsaer.com. WER is the percentage of words that were incorrectly recognized, computed by

comparing the ASR transcript to a human reference transcript (using Levenshtein distance to

count substitutions, deletions, insertions). A lower WER means better accuracy. For example, a

WER of 5% is excellent (95% words correct) on clean read speech, whereas casual

conversational speech might have higher WER. Other related metrics include Character Error

Rate (CER) (useful for languages without clear word boundaries or as a proxy for phoneme

errors) and Sentence Error Rate (percentage of whole sentences with any error). In research,

youʼll also see PER (Phoneme Error Rate) jsaer.com for phonetic-level evaluation. To

benchmark ASR, one should test on standard datasets: e.g., Librispeech test-clean/test-other

for English, Common Voice for various languages, or domain-specific sets (like an internal
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dataset of actual user queries). Tools like NIST SCTK or asr-evaluation Python packages can

calculate WER given reference and hypothesis texts. When evaluating, also consider conditions:

how does WER change with background noise, different accents, spontaneous speech vs

scripted? A comprehensive evaluation covers these scenarios. Achieving state-of-the-art

results might mean comparing your ASR choice against known WER from literature (e.g.,

Whisper large has about 2.7% WER on Librispeech clean【1†】, which is near human level).

NLU Evaluation: NLU has two aspects – intent classification and entity extraction (also called

slot filling). For intent classification, standard metrics are accuracy (percent of utterances

where the top predicted intent matches the true intent) and sometimes precision/recall/F1 if

you consider multi-label or want to see per-intent performance. If an utterance can have

multiple intents, then precision/recall become relevant (multi-intent is a bit advanced; many

systems assume one intent per utterance). For entity extraction, you treat it like a named entity

recognition task: use Precision, Recall, and F1-score for extracted entities, often computed

for each entity type as well as overall topbots.com. For example, if the user said “Book flight

from NYC to London” and the system extracted origin=NYC, destination=London, you check if

those exactly match the ground truth entities. An entity is counted correct if both the type and

the value span are correct. You might also compute Slot Error Rate (SER), which is like WER

for slots – the fraction of slots missed or wrong topbots.com. Another metric used in dialog

literature is Sentence-level Semantic Accuracy (SLSA) – basically whether the intent and all

required slots are correctly understood for the utterance topbots.com. Rasa provides evaluation

utilities that output these metrics, and Snips NLU had a benchmarking library as well

github.com. Benchmark datasets for NLU include ATIS (airline travel requests), SNIPS,

MultiWOZ (which has multi-turn dialogs with intents and slots per turn), and CLINC150 (150

intent dataset). If you incorporate an open QA component (like Haystack), evaluating that part

means measuring answer accuracy (e.g., exact match or F1 against known answers, similar to

SQuAD evaluation).

Dialogue Management Evaluation: Evaluating a dialogue manager is more complex because

itʼs about the whole conversation. One common metric for task-oriented dialogues is Task

Success Rate topbots.com – did the dialogue achieve the userʼs goal? This often requires

defining success criteria (e.g., user wanted to book a ticket, was a ticket booked by the end?). It

can be measured by having a set of dialogues either with a simulator or real users and marking

if all information was obtained and correct outcome reached. Another is Dialog Efficiency –

how many turns did it take, were there unnecessary exchanges? Typically measured in number

of turns to completion topbots.comtopbots.com. A dialog that succeeds in 6 turns is more

efficient than one that took 10 turns for the same task, for instance. There are also qualitative

metrics: e.g., appropriateness of responses, or user satisfaction gathered via surveys. In
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research, automated metrics like average reward (if using reinforcement learning, where each

dialog gets a reward signal) or the Kappa coefficient on a confusion matrix for task success

have been used topbots.com. For open-domain chatbots, automatic metrics (BLEU, etc.) donʼt

correlate well with human judgments topbots.com, so human evaluation remains key – e.g.,

having users rate dialogues on criteria like coherence, usefulness, etc. If focusing on task-

oriented bots, you can construct a set of test conversations (even using a user simulator to run

through various scenarios with the bot) to systematically measure success rate and any errors.

The DSTC (Dialog System Technology Challenge) competitions provide some methodologies for

evaluation, such as comparing the dialog state tracking accuracy (if your DM explicitly tracks

state, you can measure how often it correctly tracks the userʼs intentions across turns)

topbots.com.

NLG Evaluation: For generated responses, if using templates, thereʼs not much to evaluate

aside from proofreading them and perhaps AB testing variations. But if using a generative NLG

model, evaluation can be tricky. Automatic metrics from machine translation and summary tasks

are sometimes employed: BLEU, ROUGE, METEOR compare the generated response to a

reference response topbots.com, but in open conversation there can be many valid responses,

so these scores often donʼt reflect true quality. More meaningful is human evaluation – have

people rate the botʼs responses for correctness, naturalness, and appropriateness. One specific

metric for NLG naturalness is to do a MOS-like test (mean opinion score on a scale for how

human-like the phrasing is). Another aspect is factual correctness (especially if your NLG or

DM may hallucinate; ensure the content in the response is factually accurate w.r.t. your

knowledge base). In task-oriented dialogue, you can measure NLG quality indirectly by task

success (if the response was unclear, users wonʼt be able to follow up correctly, etc.). If we

refer to the survey by Deriu et al., they mention using F1 score to measure the correctness of

the NLG content (i.e., did it include the necessary info) and BLEU/ROUGE for surface

realization quality, plus human judgments for fluency topbots.com.

TTS Evaluation: Text-to-Speech quality is often judged by Mean Opinion Score (MOS) tests

zilliz.com, where human listeners rate audio samples (typically on a 1–5 scale). MOS is

resource-intensive (needs a panel of listeners in quiet conditions), but it is the gold standard for

naturalness and overall quality. If you donʼt have the means for a MOS test, you can subjectively

listen and compare to references. There are some objective metrics: Mel-Cepstral Distortion

(MCD) measures the difference between generated audio and a reference recording of the

same sentence zilliz.com – lower MCD (in dB) is better and correlates somewhat with quality.

PER (Phone Error Rate) or using an ASR to transcribe the TTS output and computing WER

against the input text (sometimes called intelligibility score) is also done – if a TTS is good, an

ASR should be able to transcribe it perfectly. Thereʼs also PESQ (Perceptual Evaluation of
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Speech Quality) and STOI (Short-Term Objective Intelligibility) which are metrics from

telecommunications, used to evaluate voice quality objectively zilliz.com. These can be used as

rough proxies; for example, PESQ predicts a MOS score by algorithm. In practice, for a voice

bot, ensure the TTS is intelligible (no words are mispronounced) and pleasant. You might

benchmark different voices or engines by synthesizing a fixed set of test sentences (some

short, some long, various phonetic content) and either doing a listening test or using the above

metrics. Additionally, test the TTS in real conversation context – sometimes a voice might be

clear in isolated sentences but sound monotonic or awkward across an interactive dialogue.

Fine-tuning the prosody (via SSML tags for pauses, etc.) might improve the perceived quality.

End-to-End Evaluation: Finally, consider end-to-end performance of the entire voice bot. This

can be done with scenario testing – define sample user tasks and have either human testers or

a user simulator go through them with the bot. Measure overall success, user satisfaction, and

identify failure points. For a comprehensive benchmark, you could measure: first-turn success

rate (does the bot understand user on first try), average number of reprompts needed, and user

ratings. In academia, end-to-end dialog is sometimes evaluated by having humans chat with the

bot and then rate the interaction on scales like 1-5 for various attributes (as seen in the Alexa

Prize challenge for open-domain chatbots).

By continuously evaluating with these metrics, you can track improvements and regressions. For

example, if you update the ASR model, see if WER went down. If you tweak NLU, check if intent

accuracy improved. Use confusion matrices to see which intents are getting confused and perhaps

add training data for them. Evaluation tools exist in open-source form: Rasa has rasa test  for NLU

and stories, which produces reports. There are also suites like Dialeval for dialogues. Itʼs also good

to benchmark against other systems if possible – e.g., how does your open-source voice bot stack

up against a service like Google Dialogflow or Alexa on similar tasks? This can highlight areas to

focus on.

In essence, a state-of-the-art bot not only uses strong components but also quantifies their

performance rigorously. Metrics like WER, F1, success rate, and MOS give you evidence of quality

jsaer.comtopbots.com. Backed with this data, you can iterate on the system to close any gaps and

ensure that each part of the pipeline meets the desired standards for accuracy and user experience.
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9. Deployment Options (On-Premises, Cloud, and Edge)

Deploying a voice bot in a real-world environment requires planning how the system will be hosted

and scaled. Open-source solutions offer flexibility in deployment: you can run everything fully on-

premises (offline, on your own hardware), in the cloud (using virtual machines or containers in a

cloud provider), or on edge devices (embedded hardware or user devices), or a hybrid of these. We

will discuss each approach and the relevant open-source deployment technologies like Docker and

Kubernetes for containerization and orchestration.

On-Premises Deployment: Deploying on-prem means all components of the voice bot run in your

organizationʼs local servers or data centers (or even a single machine in an offline environment).

This is often chosen for privacy, security, or latency reasons – for example, a bank may want a voice

assistant that runs locally to ensure data privacy rasa.com, so no audio or text leaves the

premises. With open-source tools, on-prem is straightforward since youʼre not tied to a vendorʼs

cloud. You would set up servers with the necessary environment (e.g., Linux machines with GPU

cards for ASR/TTS if needed). Each component (ASR, NLU, etc.) can run as a service or process on

those machines. Using Docker containers is highly beneficial here: you can containerize each

component to isolate dependencies and simplify installation. For instance, you might use the official

Rasa Docker image for the NLU/DM, a DeepSpeech or Vosk Docker image for ASR, etc. On-prem

deployments give you full control – you can even run without internet access (useful for secure

facilities or IoT scenarios). Tools like Docker Compose can help define a multi-container setup on a

single host (for development or small-scale on-prem deploy). For larger on-prem deployments

(multiple servers), Kubernetes can be installed on-prem (either vanilla Kubernetes or a distribution

like Red Hat OpenShift, or even lightweight K3s for small clusters) to coordinate containers across

servers. Running on-prem also allows integration with internal systems directly – for example,

connecting the bot to internal databases or APIs without exposing them externally.

Cloud-Native Deployment: Here, you deploy the voice bot on cloud infrastructure (AWS, Azure,

GCP, or private cloud). You still use open-source components, but you leverage the cloud providerʼs

hardware and services. A common approach is containerization + orchestration: “Docker and

Kubernetes” are practically the standards for cloud-native deployment of complex apps. You would

create Docker images for each service if not already available. Many open-source projects already

provide images – e.g., “Rasa hosts many pre-built Docker containers on Docker Hub” for different

versions learning.rasa.com, and projects like Vosk have Docker images per model for easy

deployment in Kubernetes jmrobles.medium.com. After containerizing, you define how they

communicate (e.g., maybe a Kubernetes Service for ASR, one for NLU/DM, one for TTS). You might

use a Helm chart if available (Rasa has official helm charts for deploying on K8s). In the cloud, you
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can also take advantage of auto-scaling: for instance, if load increases (say many concurrent users),

Kubernetes can spin up more pods of the ASR service to handle it. Cloud deployment also makes it

easier to distribute globally – you could run instances in multiple regions to serve users with low

latency. When deploying in the cloud, ensure you secure everything (more in Security section) since

your endpoints could be accessible publicly. Use cloud features like virtual networks so that internal

communication between services isnʼt exposed. A typical cloud setup: use a Kubernetes cluster

(managed k8s like GKE/EKS or self-managed) – deploy ASR, NLU/DM, TTS as microservices. You

might also deploy a gateway service that the client apps talk to, which then fans out to these

internal services. For stateful components like if Rasa needs a tracker store or logs, you might use

cloud storage or databases (PostgreSQL for Rasa tracker for example) – those too can be open-

source and self-hosted or use the cloud providerʼs managed DB for convenience. Cloud

deployment, while not intrinsically required by an open-source bot, is often chosen for ease of

scaling and maintenance. You can also use container orchestration to roll out updates with zero

downtime, etc.

Edge and Embedded Deployment: In some cases, the voice bot (or parts of it) runs on edge

devices – meaning on the device that is physically near the user or part of a product. This could be a

smart speaker, a smartphone, a carʼs onboard computer, or an IoT device like a Raspberry Pi. Open-

source voice assistants like Mycroft AI and Rhasspy are designed for edge use, combining

components that can run on a single board computer. For edge deployment, typically the ASR and

TTS models need to be lightweight (since edge devices have limited CPU, maybe no GPU). Tools like

Vosk are specifically cited to work “on edge devices… with a small model size fit for mobile phones

or IoT” medium.com. For example, you can run a 50 MB Vosk model on an Android device to do

offline recognition. Thereʼs also Piper TTS which is optimized for Raspberry Pi, allowing offline TTS

with good quality. Edge deployment can be fully offline (no network needed) – great for privacy and

working in environments without internet. However, edge devices might not handle heavy ML for

large models, so often a compromise is made: either use smaller models (with possibly slightly lower

accuracy) or use a hybrid approach (do wake word detection and maybe some basic commands on-

device, but offload complex requests to a server). With open source, hybrid schemes are possible:

e.g., a device could have a hotword detector (Porcupine or Precise), use a local small ASR for known

commands, and if it doesnʼt understand, send the audio to a more powerful server ASR for

processing – all of which you can set up without proprietary services.

Containerization & Orchestration Details: Docker is practically a must for ease of deployment.

Youʼd create a Dockerfile for any custom component (say you wrote a custom DM server), and

otherwise use existing images for standard components (like PostgreSQL, RabbitMQ if you use one,

Rasaʼs image, etc.). Inside Docker, you can pack all necessary models (though be mindful of image
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size). With Kubernetes, you define deployments for each microservice and perhaps use a message

broker or HTTP calls between them. For example, one Medium post shows how to “put Vosk STT

service in Kubernetes”, noting that “the project already has Docker images for each language” and

demonstrating a YAML config jmrobles.medium.com. Kubernetes brings benefits like self-healing (if

a container crashes, it restarts), scaling, and easy routing. If using Kubernetes for a voice bot, one

challenge is real-time audio streaming – ensure low network latency and maybe use protocols like

gRPC which work nicely in k8s. You might also consider using a service mesh if the architecture

grows complex, but that might be overkill initially.

Deployment Strategy Examples: Suppose we have a voice bot for customer support. An on-prem

deployment might involve a server at the call center running the voice bot; calls are routed via SIP to

an ASR service on that server which transcribes and feeds to the bot, and the botʼs answer is TTSed

back to the phone – completely internal, ensuring no call leaves the company network. A cloud

deployment of the same might instead use a cloud Speech-to-text instance (or an open source ASR

on a cloud VM) scaling to many lines, and the company doesnʼt maintain hardware. An edge

example: a voice-enabled appliance (like a smart fridge) running a small-footprint voice assistant

inside it so that it works even offline.

Finally, consider DevOps practices: use CI/CD to build your Docker images whenever you update

code, use infrastructure-as-code (like Terraform or k8s YAML) to manage deployment

configurations. Open-source orchestration means you are not locked in – you could move from one

cloud to another or to on-prem since everything is in portable containers.

In summary, open-source voice bots are extremely flexible in deployment. Whether you need the

privacy of fully on-prem, the scalability of cloud, or the low-latency offline capabilities of edge

devices, you can do it. Utilizing Docker and Kubernetes, you ensure your solution is portable and

scalable: containerization encapsulates each service with its dependencies, and orchestration

handles running those containers across the infrastructure. With options like these, one can deliver

a voice assistant that runs wherever itʼs needed – from data centers to living rooms – using purely

open technology.

10. Security and Privacy

Security and privacy are paramount in voice bot applications, especially since they involve

processing potentially sensitive user data (people might speak personal information, account

details, health queries, etc.). Using open-source components gives you full control over data
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handling, which can be a big advantage for privacy – but it also puts the responsibility on you to

implement best practices. Letʼs break down key considerations and how to address them with open-

source best practices:

Data Handling and Privacy Compliance: Voice data (both audio and transcriptions) should be

treated as sensitive personal data. If deploying on-prem or on-device, you keep data locally, greatly

reducing exposure. If any data is sent over networks (e.g., a mobile app sending audio to a server),

ensure itʼs encrypted in transit (TLS/HTTPS or WSS for WebSocket). Also encrypt sensitive data at

rest – if you store conversation logs or audio recordings, use disk encryption or at least restrict

access. An open-source voice bot can be designed to avoid storing data unnecessarily: for example,

you might choose not to log raw audio at all, or to anonymize transcripts (removing phone numbers,

names) if kept for analytics. Privacy regulations like GDPR require giving users some control – e.g.,

the ability to delete their data. So, have a mechanism to delete conversation records associated with

a user upon request if you store them. Since youʼre using open-source, you wonʼt be sending data

to third-party AI services, which helps compliance (no surprise data sharing). In contexts like

healthcare or finance, ensure you follow standards (HIPAA in US healthcare, for instance) – this may

involve running everything locally (no cloud) and strong access controls.

User Consent and Transparency: Often overlooked, but let users know that they are being

recorded or their voice is processed. If itʼs an app, have a clear privacy policy. If itʼs a physical

device, an audible tone or indicator when listening (like Alexaʼs blue ring) is a good practice so users

know when the mic is active. For wake-word based devices, ensure the wake word detection (which

can be open-source like Mycroft Precise or Porcupine) is reliable to avoid inadvertently recording

when not intended, as that becomes a privacy issue.

Secure Communication: Use secure channels for all inter-component communication, especially if

distributed. For example, if your ASR service and DM service talk over HTTP, make it HTTPS (even

inside a cloud VPC, itʼs wise to encrypt to defend against any internal threats). Use authentication

between services – e.g., an API token or key for the client app to call your botʼs API, so that only

authorized sources can send audio and receive data. In a Kubernetes deployment, one might use

mutual TLS between microservices (service mesh can help, or simpler, run all in a private network

and ensure no external access). If a public endpoint is needed (say a WebSocket for a web client to

stream audio), protect it with authentication (JWT, API keys) to prevent misuse or eavesdropping.

Access Control and Logging: Within your system, not everyone should have access to everything.

For example, if you have a database of transcripts, restrict who (which microservices or which

administrators) can read it. Use roles – an admin might see text transcripts for improving the model,

but maybe they shouldnʼt see raw audio unless needed. If using a web management interface (like
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Rasa X or Botpressʼs admin UI), secure it with strong passwords and ideally behind a VPN if

possible. Botpress notes that it offers “built-in security features such as access control and

encryption”, whereas with Rasa “you manage your own encryption, data storage, and privacy

compliance” when self-hosting keencomputer.com. In other words, open-source gives flexibility but

you must implement controls: e.g., you might add basic auth to your REST endpoints, or use an API

gateway like Kong or Traefik with access control to front your bot services.

Vulnerabilities and Updates: Keep your open-source components up to date with security

patches. Just as any software, an open-source library could have a vulnerability. For instance, an

outdated web server in your botʼs stack might be exploitable. Use dependency scanning tools

(OWASP dependency-check, etc.) to spot known CVEs in the libraries you use. Regularly update

Docker base images to include security patches. For any custom code, follow secure coding

practices since a voice bot could be a target (imagine someone tries to send a malicious payload in

an utterance to exploit the system – e.g., if you improperly handle certain inputs, it might cause

crashes or worse).

Secure Model and Data Storage: The ML models themselves (the files for ASR, NLU, etc.) should

be stored securely to prevent tampering. An attacker altering a model could, in theory, change

behavior (like a poisoned model). Store model files with correct permissions (non-world-readable on

Linux, etc.). If you distribute the bot (say an edge device in usersʼ homes), consider the risk of

someone extracting or manipulating the model (this is more of an anti-tamper concern; maybe not

critical unless the model itself encodes sensitive info which typically it doesnʼt in open usage).

Preventing Data Leakage: Because you control the stack, ensure that none of the open-source

components are inadvertently sending data externally. Some cloud-based SDKs do that, but pure

open-source ones like Kaldi, Rasa, etc., generally donʼt phone home. Double-check configurations –

e.g., disable any analytics in these tools if present. Also, if your system uses any third-party services

(like for SMS or something), consider what data is sent and ensure itʼs minimized and secured.

Privacy-Preserving Machine Learning: This is an advanced topic, but worth a mention.

Techniques like differential privacy and federated learning can be applied if you plan to improve

models using user data. For instance, if you gather conversation logs to improve the NLU, you could

anonymize them and strip personal identifiers. Differential privacy (adding noise to ensure

individuals canʼt be re-identified from aggregated data) is something to consider if doing large-

scale analytics on user queries.
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Ethical and Security Concerns: Voice bots can be targets of misuse – e.g., an attacker might try to

trigger certain actions by imitating the userʼs voice or by finding phrases that fool the NLU.

Implement authentication for actions that need it (if the bot is doing something sensitive like

transferring money, donʼt rely solely on voice; consider a secondary auth factor or at least a

confirmation). Also, include throttling/rate limiting – to prevent DDoS or abuse, limit how many

requests a single IP or user can make in a short time, etc., which can be done at the web server or

gateway level.

Audit and Monitoring: Maintain logs of access and actions (with caution to not log sensitive info in

plaintext). Monitor these for unusual activity. For example, if someone is repeatedly trying to invoke

an admin-only intent via voice, that might be an attempted exploit. With open-source, you can

integrate with SIEM tools easily by outputting standard logs. If an incident happens, you have all the

pieces (since you host them) to investigate; whereas with a closed cloud service you might not get

that detail.

To sum up, leveraging open-source means you own the responsibility for security and privacy, but

you also own the control. Best practices include encrypting data in transit and at rest, limiting

access (both network access and user access) to the system, and handling user data in compliance

with regulations. As the JSAER research paper highlighted, “Protecting user privacy and preventing

unauthorized access requires secure data handling practices.” jsaer.com This includes everything

from secure coding to infrastructure security. Additionally, by self-hosting, “organizations can

manage their own encryption, data storage, and privacy compliance”, avoiding the risks of third-

party cloud exposure keencomputer.com. Implementing these measures ensures that your state-of-

the-art voice bot not only performs well, but also maintains the trust and safety that users and

regulators demand.

Sources: The information in this report has been gathered from a range of up-to-date resources,

including technical blogs, research papers, and documentation of the mentioned open-source

projects. Key sources include a Deepgram study on open ASR models

deepgram.comdeepgram.com, a Medium comparison of ASR engines medium.com, Rasaʼs official

blog and documentation for NLU/DM insights botfriends.dekeencomputer.com, open-source TTS

benchmarks tderflinger.com, as well as NVIDIA̓s guide on deploying Rasa with Riva for architecture

considerations developer.nvidia.com, among others. All citations are provided in-text in the format

【source† lines】  for reference. Each component and recommendation described is grounded in

these sources, ensuring that this guide reflects state-of-the-art practices as of 2025.

Tags: voice bot, open source, asr, speech recognition, openai whisper, kaldi, vosk, speech to text
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About ClearlyIP

ClearlyIP Inc. — Company Profile (June 2025)

1. Who they are

ClearlyIP is a privately-held unified-communications (UC) vendor headquartered in Appleton, Wisconsin,

with additional offices in Canada and a globally distributed workforce. Founded in 2019 by veteran

FreePBX/Asterisk contributors, the firm follows a "build-and-buy" growth strategy, combining in-house R&D

with targeted acquisitions (e.g., the 2023 purchase of Voneto's EPlatform UCaaS). Its mission is to "design

and develop the world's most respected VoIP brand" by delivering secure, modern, cloud-first

communications that reduce cost and boost collaboration, while its vision focuses on unlocking the full

potential of open-source VoIP for organisations of every size. The leadership team collectively brings more

than 300 years of telecom experience.

2. Product portfolio

Cloud Solutions – Including Clearly Cloud (flagship UCaaS), SIP Trunking, SendFax.to cloud fax,

ClusterPBX OEM, Business Connect managed cloud PBX, and EPlatform multitenant UCaaS. These

provide fully hosted voice, video, chat and collaboration with 100+ features, per-seat licensing, geo-

redundant PoPs, built-in call-recording and mobile/desktop apps.

On-Site Phone Systems – Including CIP PBX appliances (FreePBX pre-installed), ClusterPBX
Enterprise, and Business Connect (on-prem variant). These offer local survivability for compliance-

sensitive sites; appliances start at 25 extensions and scale into HA clusters.

IP Phones & Softphones – Including CIP SIP Desk-phone Series (CIP-25x/27x/28x), fully white-label

branding kit, and Clearly Anywhere softphone (iOS, Android, desktop). Features zero-touch

provisioning via Cloud Device Manager or FreePBX "Clearly Devices" module; Opus, HD-voice, BLF-

rich colour LCDs.

VoIP Gateways – Including Analog FXS/FXO models, VoIP Fail-Over Gateway, POTS Replacement (for

copper sun-set), and 2-port T1/E1 digital gateway. These bridge legacy endpoints or PSTN circuits to

SIP; fail-over models keep 911 active during WAN outages.

Emergency Alert Systems – Including CodeX room-status dashboard, Panic Button, and Silent

Intercom. This K-12-focused mass-notification suite integrates with CIP PBX or third-party FreePBX

for Alyssa's-Law compliance.
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Hospitality – Including ComXchange PBX plus PMS integrations, hardware & software assurance

plans. Replaces aging Mitel/NEC hotel PBXs; supports guest-room phones, 911 localisation, check-

in/out APIs.

Device & System Management – Including Cloud Device Manager and Update Control (Mirror).

Provides multi-vendor auto-provisioning, firmware management, and secure FreePBX mirror updates.

XCast Suite – Including Hosted PBX, SIP trunking, carrier/call-centre solutions, SOHO plans, and XCL

mobile app. Delivers value-oriented, high-volume VoIP from ClearlyIP's carrier network.

3. Services

Telecom Consulting & Custom Development – FreePBX/Asterisk architecture reviews, mergers &

acquisitions diligence, bespoke application builds and Tier-3 support.

Regulatory Compliance – E911 planning plus Kari's Law, Ray Baum's Act and Alyssa's Law

solutions; automated dispatchable location tagging.

STIR/SHAKEN Certificate Management – Signing services for Originating Service Providers, helping

customers combat robocalling and maintain full attestation.

Attestation Lookup Tool – Free web utility to identify a telephone number's service-provider code

and SHAKEN attestation rating.

FreePBX® Training – Three-day administrator boot camps (remote or on-site) covering installation,

security hardening and troubleshooting.

Partner & OEM Programs – Wholesale SIP trunk bundles, white-label device programs, and

ClusterPBX OEM licensing.

4. Executive management (June 2025)

CEO & Co-Founder: Tony Lewis – Former CEO of Schmooze Com (FreePBX sponsor); drives vision,

acquisitions and channel network.

CFO & Co-Founder: Luke Duquaine – Ex-Sangoma software engineer; oversees finance,

international operations and supply-chain.

CTO & Co-Founder: Bryan Walters – Long-time Asterisk contributor; leads product security and

cloud architecture.

Chief Revenue Officer: Preston McNair – 25+ years in channel development at Sangoma & Hargray;

owns sales, marketing and partner success.

Chief Hospitality Strategist: Doug Schwartz – Former 360 Networks CEO; guides hotel vertical

strategy and PMS integrations.

Chief Business Development Officer: Bob Webb – 30+ years telco experience (Nsight/Cellcom);

cultivates ILEC/CLEC alliances for Clearly Cloud.
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Chief Product Officer: Corey McFadden – Founder of Voneto; architect of EPlatform UCaaS, now

shapes ClearlyIP product roadmap.

VP Support Services: Lorne Gaetz (appointed Jul 2024) – Former Sangoma FreePBX lead; builds

24×7 global support organisation.

VP Channel Sales: Tracy Liu (appointed Jun 2024) – Channel-program veteran; expands MSP/VAR

ecosystem worldwide.

5. Differentiators

Open-Source DNA: Deep roots in the FreePBX/Asterisk community allow rapid feature releases and

robust interoperability.

White-Label Flexibility: Brandable phones and ClusterPBX OEM let carriers and MSPs present a fully

bespoke UCaaS stack.

End-to-End Stack: From hardware endpoints to cloud, gateways and compliance services, ClearlyIP

owns every layer, simplifying procurement and support.

Education & Safety Focus: Panic Button, CodeX and e911 tool-sets position the firm strongly in K-12

and public-sector markets.

In summary

ClearlyIP delivers a comprehensive, modular UC ecosystem—cloud, on-prem and hybrid—backed by a

management team with decades of open-source telephony pedigree. Its blend of carrier-grade

infrastructure, white-label flexibility and vertical-specific solutions (hospitality, education, emergency-

compliance) makes it a compelling option for ITSPs, MSPs and multi-site enterprises seeking modern,

secure and cost-effective communications.

DISCLAIMER

This document is provided for informational purposes only. No representations or warranties are made regarding the

accuracy, completeness, or reliability of its contents. Any use of this information is at your own risk. ClearlyIP shall not

be liable for any damages arising from the use of this document. This content may include material generated with

assistance from artificial intelligence tools, which may contain errors or inaccuracies. Readers should verify critical

information independently. All product names, trademarks, and registered trademarks mentioned are property of their

respective owners and are used for identification purposes only. Use of these names does not imply endorsement. This

document does not constitute professional or legal advice. For specific guidance related to your needs, please consult

qualified professionals.
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